3.209 \(\int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=76 \[ \frac{2 a^{3/2} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

(2*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d
*x]]*Sqrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.124207, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2762, 21, 2774, 216} \[ \frac{2 a^{3/2} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*a^2*Sin[c + d*x])/(d*Sqrt[Cos[c + d
*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^{3/2}}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}-(2 a) \int \frac{-\frac{a}{2}-\frac{1}{2} a \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}+a \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{2 a^{3/2} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}+\frac{2 a^2 \sin (c+d x)}{d \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.147204, size = 85, normalized size = 1.12 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right )+\sqrt{2} \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right ) \sqrt{\cos (c+d x)}\right )}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] +
2*Sin[(c + d*x)/2]))/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.354, size = 249, normalized size = 3.3 \begin{align*} -2\,{\frac{a\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{d \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 1+\cos \left ( dx+c \right ) \right ) ^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3/2}} \left ( \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\, \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \cos \left ( dx+c \right ) + \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) +\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)/cos(d*x+c)^(3/2),x)

[Out]

-2/d*a*((cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*cos(
d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*c
os(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+co
s(d*x+c)*sin(d*x+c))*(a*(1+cos(d*x+c)))^(1/2)*sin(d*x+c)^2/(-1+cos(d*x+c))/(1+cos(d*x+c))^2/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 1.96692, size = 1346, normalized size = 17.71 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/2*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*
(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.73334, size = 298, normalized size = 3.92 \begin{align*} \frac{2 \,{\left (\sqrt{a \cos \left (d x + c\right ) + a} a \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) -{\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )\right )}}{d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2*(sqrt(a*cos(d*x + c) + a)*a*sqrt(cos(d*x + c))*sin(d*x + c) - (a*cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(a)*ar
ctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a \left (\cos{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}{\cos ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)